Author Topic: Under what conditions can flow over a sphere be modeled as axisymmetric?  (Read 902 times)

Offline infocfd

  • Newbie
  • *
  • Posts: 37
  • Reputation: +0/-0
  • Searching for solution
    • View Profile
Advertisement
Just want to know under what conditions can flow over a sphere be modeled as axisymmetric?

Thanks.

Offline william

  • Full Member
  • ***
  • Posts: 151
  • Reputation: +14/-0
  • Know it, share it.
    • View Profile
Up to what Reynolds number can the flow over a sphere be modeled as axisymmetric?
Studies have shown that for Re < 20 (Re based on sphere diameter), there is no separation and the flow is referred to as creeping flow. Taneda's paper determined that separation from the rear of the sphere occurs at Re ~ 24 and results in the generation of an axisymmetric vortex ring. At Reynolds numbers between 24 and approximately 210, the flow is separated, steady, axisymmetric and topologically similar. In the range of 210 < Re <270, the flow becomes non-axisymmetric as the ring-vortex shifts, however this wake was observed to remain steady. For Re > 280, hairpin-shaped vortices are periodically shed from the sphere to form a completely laminar wake. Hence, up to Re=210, one can model the flow over sphere as axisymmetric.

Ref: S. Taneda, Experimental Investigations of the Wake Behind a Sphere at Low Reynolds Numbers, Journal of Physics, Japan, Vol. 11, No. 10, 1956, pp. 1104-1108.